Object recognition with hierarchical discriminant saliency networks
نویسندگان
چکیده
The benefits of integrating attention and object recognition are investigated. While attention is frequently modeled as a pre-processor for recognition, we investigate the hypothesis that attention is an intrinsic component of recognition and vice-versa. This hypothesis is tested with a recognition model, the hierarchical discriminant saliency network (HDSN), whose layers are top-down saliency detectors, tuned for a visual class according to the principles of discriminant saliency. As a model of neural computation, the HDSN has two possible implementations. In a biologically plausible implementation, all layers comply with the standard neurophysiological model of visual cortex, with sub-layers of simple and complex units that implement a combination of filtering, divisive normalization, pooling, and non-linearities. In a convolutional neural network implementation, all layers are convolutional and implement a combination of filtering, rectification, and pooling. The rectification is performed with a parametric extension of the now popular rectified linear units (ReLUs), whose parameters can be tuned for the detection of target object classes. This enables a number of functional enhancements over neural network models that lack a connection to saliency, including optimal feature denoising mechanisms for recognition, modulation of saliency responses by the discriminant power of the underlying features, and the ability to detect both feature presence and absence. In either implementation, each layer has a precise statistical interpretation, and all parameters are tuned by statistical learning. Each saliency detection layer learns more discriminant saliency templates than its predecessors and higher layers have larger pooling fields. This enables the HDSN to simultaneously achieve high selectivity to target object classes and invariance. The performance of the network in saliency and object recognition tasks is compared to those of models from the biological and computer vision literatures. This demonstrates benefits for all the functional enhancements of the HDSN, the class tuning inherent to discriminant saliency, and saliency layers based on templates of increasing target selectivity and invariance. Altogether, these experiments suggest that there are non-trivial benefits in integrating attention and recognition.
منابع مشابه
Fisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection
Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...
متن کاملDiscriminant Saliency for Visual Recognition from Cluttered Scenes
Saliency mechanisms play an important role when visual recognition must be performed in cluttered scenes. We propose a computational definition of saliency that deviates from existing models by equating saliency to discrimination. In particular, the salient attributes of a given visual class are defined as the features that enable best discrimination between that class and all other classes of ...
متن کاملBiologically plausible saliency mechanisms improve feedforward object recognition
The biological plausibility of statistical inference and learning, tuned to the statistics of natural images, is investigated. It is shown that a rich family of statistical decision rules, confidence measures, and risk estimates, can be implemented with the computations attributed to the standard neurophysiological model of V1. In particular, different statistical quantities can be computed thr...
متن کاملObject Recognition in Clutter Color Images Using Hierarchical Temporal Memory Combined with Salient-region Detection
The essential goal of this paper consists in extending the functionality of the bio-inspired intelligent HTM (Hierarchical Temporal Memory) network towards two capabilities: (i) object recognition in color images, and (ii) classification of objects located in "clutter color images. The former extension is based on development of a novel scheme for application of three parallel HTM networks whic...
متن کاملHierarchical Discriminant Analysis for ImageRetrievalDaniel
A self-organizing framework for object recognition is described. We describe a hierarchical database structure for image retrieval. The SHOSLIF (Self-Organizing Hierarchical Optimal Subspace Learning and Inference Framework) system uses the theories of optimal linear projection for automatic optimal feature derivation and a hierarchical structure to achieve a logarithmic retrieval complexity. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2014